

ASX: SKY

DORADILLA PROJECT LARGE EXPANSION OF REE MINERALISATION

- Assay results for the aircore drilling program of 63 holes for total of 3,062m have been received, successfully expanding the rare earth element (REE) mineralisation at the Doradilla Project.
- Assay results have **extended the DMK Line strike by 4km**, with further REE mineralisation discovered at Midway and over the Midway Granite. Results include:

MWAC031: 24m @ 3,871ppm (0.39%) TREO from 44m, including; 8m @ 10,191ppm (1.02%) TREO from 48m.

MWAC018: 20m @ 3,463ppm (0.35%) TREO from 69m, including; 7m @ 5,682ppm (0.57%) TREO from 73m.

MWAC052: 14m @ 1,983ppm (0.20%) TREO & 0.45% Tin from 17m, including; 3m @ 6,854ppm (0.69%) TREO & 0.26% Tin from 17m.

- High concentrations of valuable REE are seen throughout and averages over 20% MREO (Nr+Pr+Tb+Dy), highlighted in MWAC031 intercept of <u>8m @ 10,191ppm (1.02%)</u> <u>TREO</u> from 48m which <u>averages over 34% MREO</u>.
- Testwork is ongoing to develop extraction pathways for the high value REE and Tin mineralisation, samples from this program will be sent to ANSTO for this testwork.

SKY CEO Oliver Davies commented: "This program has shown a significant expansion of the high value REE mineralisation with all results contained in the +50m deep clays from surface over the broad 16km strike at Doradilla. Crucially, these results confirm the very valuable mix of REE present at Doradilla, with an average of +20% Nd+Pr+Tb+Dy. The REE mineralisation has now been extended over the Midway Granite, to the north of the DMK Line and further mineralisation has been discovered along the previously untested 4km strike between Doradilla and Midway. This demonstrates the extraordinary size and continuity of the REE and tin mineralisation and the potential for the ongoing growth of the already expansive Doradilla Project. SKY will continue working on pathways to extract the high value REE and tin mineralisation from this large potential source of REE and tin."

The Board of Sky Metals Limited ('SKY' or 'The Company') is pleased to provide an update on the results of the aircore drilling to expand the high value REE and Tin-polymetallic mineralisation at the Doradilla Project.

DORADILLA PROJECT (EL 6258, SKY 100%)

RARE EARTH ELEMENT MINERALISATION – AIRCORE DRILLING PROGRAM

Results for the aircore drilling program completed at the Doradilla Project in April this year have been received for all 63 holes for a total of 3,062m. The program has successfully expanded the strike of the DMK Line by 4km between the Doradilla and Midway Deposits and discovered REE mineralisation over the Midway Granite.

SKY METALS LIMITED

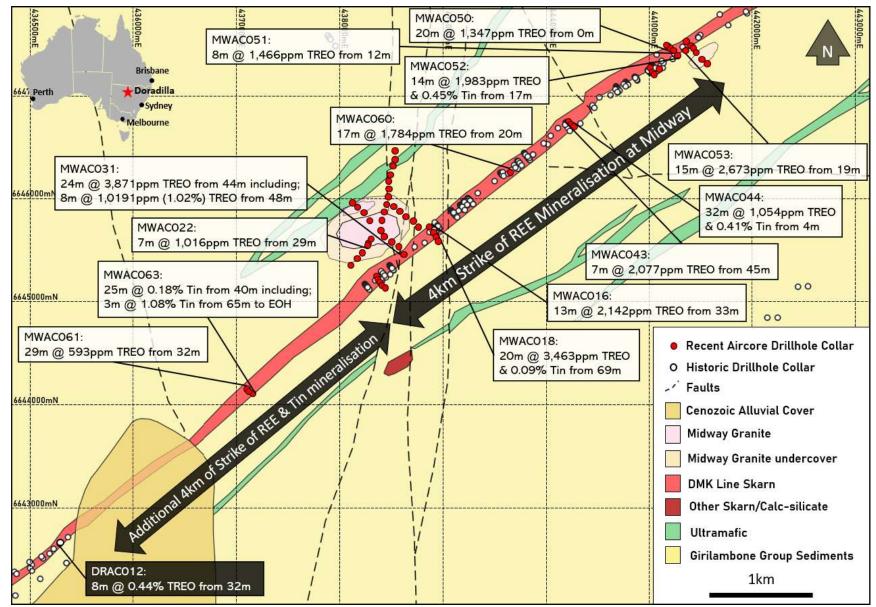
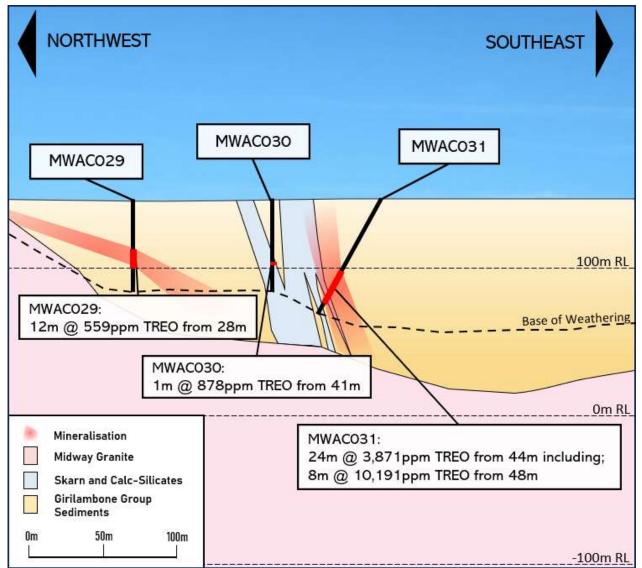


Figure 1: Doradilla Project – Map shows the large strike extension of the previously undrilled and untested strike between Midway and Doradilla on the DMK Line and the previous strike extent with recent aircore drilling intercepts overlaid on the mapped and interpreted geology.

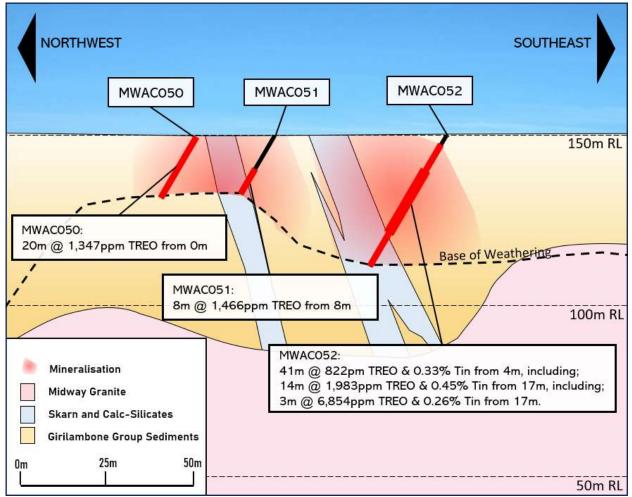

The program was focussed on testing the Midway Deposit and along strike extension of the DMK Line for REE and Tin mineralisation as Midway has the **highest grade REE and tin identified along the DMK Line to date**. This program was also designed to test the outcropping Midway Granite for potential REE mineralisation.

The program commenced with drilling two traverses on a southeast-northwest orientation commencing from the DMK line and progress across the surface outcrop of the Midway Granite. Another traverse was then completed southwest-northeast over the Midway Granite outcrop to test the volume of the weathered Midway Granite for potential mineralisation.

Results from these traverses intercepted exceptionally high grade REE mineralisation in the DMK Line through the Midway Deposit (Figures 1 and 2 and Table 2), results included:

MWAC031: 24m @ 3,871ppm (0.39%) TREO from 44m, including; 8m @ 10,191ppm (1.02%) TREO from 48m.

MWAC018: 20m @ 3,463ppm (0.35%) TREO from 69m, including; 7m @ 5,682ppm (0.57%) TREO from 73m.


Figure 2: Doradilla Project – Cross-section from MWAC029 to MWAC031 showing the DMK line Skarn above the Midway Granite with the Midway Granite coming to surface and outcropping to the northwest.

Drilling then continued along the Midway Deposit with multiple traverses of angled aircore holes to confirm the historic drilling results throughout the Midway Deposit completed in the 1970s and 1980s. These results also confirmed the re-assaying completed by SKY of the historic drill pulp samples. Numerous high-grade and broad zones of REE and Tin mineralisation were confirmed throughout the Midway Deposit (Figures 1 and 3 and Table 2), results included:

MWAC052: 41m @ 822pm (0.08%) TREO & 0.33% Tin from 4m, including; 14m @ 1,983ppm (0.20%) TREO & 0.45% Tin from 17m, including; 3m @ 6,854ppm (0.69%) TREO & 0.26% Tin from 17m. 1m @ 10,114ppm (1.01%) TREO & 0.08% Tin from 17m.

MWAC044: 32m @ 1,054ppm (0.11%) TREO & 0.41% Tin from 32m, including; 15m @ 1,081ppm (0.11%) TREO & 0.75% Tin from 12m, and; 6m @ 2,266ppm (0.23%) TREO & 0.51% Tin from 23m.

MWAC053: 15m @ 2,673ppm (0.27%) TREO, 0.08% Tin & 0.03% Tungsten from 15m.

Figure 3: Doradilla Project – Cross-section from MWAC050 to MWAC052 showing the multiple skarns of the DMK line associated with REE and tin mineralisation above the Midway Granite which underlies the area.

Finally, a traverse of three (3) angled aircore holes were drilled for a 1.5km along strike step out southwest from Midway and 2.5km along strike to the northeast from Doradilla, testing the 4km of untested strike of the DMK Line between the Midway and Doradilla Deposits. These holes successfully intercepted the DMK Line and REE and tin

mineralisation. This extends the strike of the DMK line over an additional 4km between the previous untested strike of the DMK Line Doradilla and Midway (Figure 1 and Table 2), results included:

MWAC061: 29m @ 593ppm (0.06%) TREO from 32m. MWAC062: 13m @ 620ppm (0.06%) TREO from 44m. MWAC063: 25m @ 0.18% Tin & 0.71% Zn from 40m, including; 9m @ 0.41% Tin & 0.77% Zn from 56m, including; 3m @ 1.08% Tin from 62m.

This strike extension between the Midway and Doradilla Deposits further demonstrates the remarkable opportunity to continue to expand the DMK Line's high value REE and tin mineralisation at Doradilla.

This aircore program has successfully:

- Discovered complimentary REE mineralisation over the Midway Granite,
- Confirmed and expanded the REE and tin mineralisation at the Midway Deposit and,
- Substantially extended the REE and tin mineralisation of the DMK Line, showing the DMK Line is continuous over **an additional 4km** of previously untested strike between the Midway and Doradilla Deposits.

This program highlights exceptional opportunity to continue to grow this large and high value potential source of REE and tin-polymetallic mineralisation.

METALLUGICAL TESTWORK PROGRAM

Samples from this aircore drilling program will be promptly sent to ANSTO to test extraction of the REE via AS (ammonium sulphate) leaching or for investigation with other extraction methods if required. However, the Midway Granite samples and other areas of the Midway Deposit, possibly represents a discrete type of REE mineralisation and, therefore, different chemistry from the previously tested mineralisation. Therefore, it is possible that this mineralisation will be more amenable REE extraction via AS leaching than previous samples tested.

More broadly, SKY is continuing to progress the preliminary work on the nature and potential metallurgical pathways for the extraction of the high value REE and tin mineralisation at Doradilla. This has commenced with the REE mineralisation characterisation work and review of past metallurgical work currently being completed at ANSTO and UNSW to begin investigating potential metallurgical pathways.

A first pass trial of ammonium sulphate (AS) leaching at a solution pH of 4 and pH of 3 by ANSTO for samples from the DMK Line has not shown promise for economic extraction of REE via this method. However, this in one of many possible alternatives for economic extraction can be investigated. It is likely that a number of other extraction pathways will be available given the strong grades and the high value of mineralisation present at the project.

SKY will continue to work with ANSTO, along with other experts, to further test a broad range of methods available to extract the REE, tin and polymetallic mineralisation on the DMK Line and mineralisation more widely discovered at Doradilla.

Table 1: Doradilla Project – Drillhole Collar Details.

		700		uumu i	10,001 0		
Hole ID	Easting (MGA)	Northing (MGA)	RL (m)	DIP	Azimuth (MGA)	Total Depth (m)	Comment
MWAC001	438757	6645730	180	-90	0	78	
MWAC002	438711	6645781	180	-90	0	76	
MWAC003	438636	6645830	180.1	-90	0	77	
MWAC004	438579	6645880	180.1	-90	0	50	
MWAC005	438521	6645928	180	-90	0	68	
MWAC006	438456	6645947	180	-90	0	62	
MWAC007	438467	6646022	180	-90	0	42	
MWAC008	438473	6646094	180	-90	0	60	
MWAC009	438472	6646166	180	-90	0	59	
MWAC010	438481	6646231	180	-90	0	63	
MWAC011	438510	6646312	180	-90	0	39	
MWAC012	438535	6646383	180	-90	0	78	
MWAC013	438538	6646464	180	-90	0	66	
MWAC014	438427	6645870	180	-90	0	22	
MWAC015	438401	6645794	180	-90	0	2	
MWAC016	438862	6645729	180	-60	325	57	
MWAC017	438882	6645699	180	-60	326	44	
MWAC018	438910	6645664	180	-60	326	89	
MWAC019	438935	6645627	180	-60	326	66	
MWAC020	438955	6645598	180	-60	326	67	
MWAC021	438299	6645619	180	-90	0	2	
MWAC022	438262	6645549	180	-90	0	36	
MWAC023	438209	6645472	180	-90	0	36	
MWAC024	438160	6645412	180	-90	0	33	
MWAC025	438108	6645347	180	-90	0	38	
MWAC026	438279	6645574	180	-90	0	9	
MWAC027	438404	6645686	180	-90	0	20	
MWAC028	438429	6645639	180	-90	0	22	
MWAC029	438501	6645589	180	-90	0	60	
MWAC030	438573	6645528	180	-90	0	60	
MWAC031	438617	6645469	180	-60	325	87	
MWAC032	438350	6645253	180	-60	326	36	
MWAC033	438371	6645214	180	-60	326	39	Abandoned
MWAC034	438392	6645195	180	-60	325	71	
MWAC035	438412	6645158	180	-60	325	78	
MWAC036	438439	6645131	180	-60	325	53	
MWAC037	438289	6645791	180	-90	10	1	
MWAC038	438224	6645869	180	-90	10	55	
MWAC039	438164	6645916	180	-90	10	3	
MWAC040	438116	6645957	180	-90	10	28	
MWAC041	440207	6646752	180	-60	325	53	
MWAC042	440232	6646727	180	-60	325	33	Abandoned
MWAC043	440261	6646698	180	-60	325	62	
MWAC044	441011	6647248	180	-60	325	36	
MWAC045	441030	6647228	180	-60	325	62	
MWAC046	441049	6647208	180	-60	325	78	
MWAC047	441088	6647259	180	-60	325	61	
MWAC048	440999	6647264	180	-60	325	20	
MWAC049	441162	6647491	180	-60	325	77	
MWAC050	441210	6647441	180	-60	325	20	
MWAC051	441229	6647427	180	-60	325	20	
MWAC052	441257	6647385	180	-60	325	45	
MWAC053	441341	6647436	180	-60	325	34	
MWAC054	441357	6647526	180	-60	325	40	
MWAC055	441396	6647478	180	-60	325	13	
MWAC056	441417	6647462	180	-60	325	45	

Hole ID	Easting (MGA)	Northing (MGA)	RL (m)	DIP	Azimuth (MGA)	Total Depth (m)	Comment
MWAC057	441455	6647415	180	-60	325	78	
MWAC058	441500	6647353	180	-60	325	48	
MWAC059	441551	6647311	180	-60	325	45	
MWAC060	439647	6646266	180	-60	325	49	
MWAC061	437165	6644101	180	-60	325	80	
MWAC062	437129	6644135	180	-60	325	66	
MWAC063	437106	6644150	180	-60	325	65	

Table 2: Doradilla Project – Significant Drillhole Intercepts.

Hole ID	From	To	Interval	TREO	MREO	Sn	W	Cu	Zn	In	Ag	Comment
TIOLE ID	(m)	(m)	(m)		%	%	%	%	%	g/t	g/t	comment
	(11)	(11)	(11)	ppm	/0	/0	/0	/0	/0	y/t	y/t	Open to EOH, 4m composite
MWAC001	36	56	20	593	23	-	-	-	-	-	-	samples
MWAC002	20	32	12	1016	20	-	-	-	-	-	-	4m composite samples
MWAC004	28	40	12	753	21	-	-	-	-	-	-	4m composite samples
MWAC005	20	36	16	712	24	-	-	-	-	-	-	4m composite samples
MWAC006	16	28	12	526	24	-	-	-	-	-	-	4m composite samples
MWAC007	24	40	16	602	24	-	-	-	-	-	-	4m composite samples
MWAC008	36	44	8	634	26	-	-	-	-	-	-	4m composite samples
MWAC009	36	48	12	519	22	-	-	-	-	-	-	4m composite samples
MWAC011	12	24	12	494	26	-	-	-	-	-	-	4m composite samples
MWAC012	58	61	3	493	23	-	-	-	-	-	-	
MWAC013	32	40	8	541	22	-	-	-	-	-	-	4m composite samples
MWAC014	8	22	14	691	21	-	-	-	-	-	-	4m composite samples & 2m composite
MWAC016	33	46	13	2142	20	0.04	-	-	-	-	-	
including	34	38	4	3998	20	0.03	-	0.07	0.2	-	-	
	43	45	2	625	20	0.15	-	-	-	-	-	
MWAC017	4	16	12	556	18	0.21	-	-	-	12.6	-	4m composite samples
including	12	16	4	1038	5	0.33	-	-	-	25.6	-	4m composite samples
	31	34	3	831	19	-	-	-	-	-	-	
MWAC018	16	89	73	1355	15	0.16	-	-	-	-	-	4m composite and 1m samples
including	16	36	20	640	21	0.33	-	-	-	24.5	-	4m composite samples
	69	89	20	3463	26	0.09	-	-	0.4	-	-	
including	73	80	7	5682	27	0.04	-	-	0.52	-	-	
including	84	89	5	1379	24	0.18	-	-	-	10.2	-	
MWAC019	36	60	24	563	25	-	-	-	0.24	-	-	4m composite and 1m samples
MWAC020	40	44	4	495	30	-	-	-	-	-	-	4m composite samples
MWAC021	1	2	1	416	15	-	-	-	-	-	-	EOH at 2m, drilled into shallow hard granite
MWAC022	29	36	7	1016	22	-	-	-	-	-	-	EOH at 36m, drilled into flank of granite
MWAC023	20	24	4	516	19	-	-	-	-	-	-	4m composite samples
MWAC024	25	28	3	469	16	-	-	-	-	-	-	
MWAC025	20	28	8	524	24	-	-	-	-	-	-	4m composite samples
MWAC026	6	7	1	616	14	-	-	-	-	-	-	
MWAC027	4	5	1	465	17	-	-	-	-	-	-	

Hole ID	From	To	Interval	TREO	MREO	Sn	W	Cu	Zn	In	Ag	Comment
	(m)	(m)	(m)	ppm	%	%	%	%	%	g/t	g/t	
MWAC028	12	17	5	802	22	-	-	-	-	-	-	
MWAC029	28	40	12	559	21	-	-	-	-	-	-	4m composite samples
MWAC030	41	42	1	878	24	-	-	0.07	-	-	-	· · ·
MWAC031	44	68	24	3871	30	-	-	-	-	-	-	4m composite samples
including	48	56	8	10191	34	-	-	-	-	-	-	4m composite samples
MWAC032	12	16	4	529	40	-	-	-	-	-	-	4m composite samples
MWAC034	44	68	24	629	20	0.13	-	0.04	-	-	-	4m composite samples
MWAC035	56	72	16	1325	22	0.1	-	-	-	-	-	4m composite samples
including	56	64	8	2143	29	0.1	-	-	-	-	-	4m composite samples
MWAC038	24	40	16	705	20	-	-	-	-	-	-	
MWAC041	36	43	7	744	24	-	-	-	-	-	-	
MWAC042	16	27	11	1976	26	-	-	-	0.26	-	-	4m composite and 1m samples
MWAC043	20	32	12	1189	28	-	-	-	-	-	-	
	45	52	7	2077	24	-	-	-	0.4	-	-	
including	46	48	2	4557	28	0.17	-	-	0.23	-	-	
MWAC044	4	36	32	1054	22	0.41	-	-	0.31	24.6	-	4m composite and 1m samples
including	12	27	15	1081	23	0.75	-	-	0.38	43.6	-	
including	23	29	6	2266	22	0.51	-	-	0.66	32.3	-	
MWAC045	28	54	26	673	20	0.37	-	-	-	24.6	-	
including	48	54	6	1729	24	0.09	-	0.06	0.38	-	-	
MWAC046	48	64	16	652	28	-	-	-	-	-	-	4m composite samples
	74	78	4	-	-	0.19	-	-	-	20.6	-	
MWAC047	16	61	45	560	22	0.58	-	-	-	20.9	-	4m composite and 1m samples
including	36	61	25	563	20	1.03	-	0.08	0.2	37.4	-	
including	52	59	7	947	23	0.67	-	0.08	0.29	29.2	-	
MWAC048	16	20	4	1587	32	-	-	-	-	-	-	
MWAC049	12	32	20	653	25	-	-	-	-	-	-	4m composite samples
MWAC050	0	20	20	1347	24	-	-	-	-	-	-	
MWAC051	12	20	8	1466	27	-	-	-	-	-	-	
MWAC052	4	45	41	822	23	0.33	-	-	-	-	-	
including	17	31	14	1983	25	0.45	-	-	0.28	19.8	-	
including	17	20	3	6854	25	0.26	-	-	0.27	11.3	-	
including	17	18	1	10114	29	0.08	-	-	0.33	-	-	
MWAC053	19	34	15	2673	19	0.08	0.03	-	-	-	-	
MWAC054	20	37	17	694	23	-	-	-	-	-	-	
MWAC056	16	20	4	534	18	-	-	-	-	-	-	4m composite sample
MWAC057	28	32	4	610	23	-	-	-	-	-	-	4m composite sample
MWAC058	15	21	6	525	25	-	-	-	-	-	-	
	27	42	15	480	20	-	-	-	-	-	-	
MWAC059	21	41	20	956	20	-	-	-	-	-	-	
MWAC060	20	37	17	1784	22	0.07	-	-	0.35	-	-	4m composite and 1m samples
	34	45	11	643	16	0.1	-	-	0.19	-	-	Tin intercept
MWAC061	32	61	29	593	23	-	-	-	-	-	-	
MWAC062	44	57	13	620	24	-	-	-	0.35	-	-	

Hole ID	From	То	Interval	TREO	MREO	Sn	W	Cu	Zn	In	Ag	Comment
	(m)	(m)	(m)	ppm	%	%	%	%	%	g/t	g/t	
MWAC063	40	65	25	-	-	0.18	-	-	0.71	-	-	4m composite and 1m samples
including	56	65	9	-	-	0.41	-	-	0.77	-	-	
including	62	65	3	-	-	1.08	-	-	0.22	-	-	

This report has been approved for release by the Board of Directors.

ABOUT SKY (ASX: SKY)

SKY is an ASX listed public company focused on the exploration and development of high value mineral resources in Australia. SKY's project portfolio offers exposure to the tin, gold, and copper markets in the world class mining jurisdiction of NSW.

TIN PROJECTS

TALLEBUNG PROJECT (EL6699, 100% SKY)

The Tallebung Project is located ~70km north-west of Condobolin in central NSW. The project encompasses the historic Tallebung Tin Mining Field at the northern extent of the Wagga Tin Belt within the central Lachlan Orogen where SKY has now defined a maiden MRE of 10.2Mt @ 0.18% Tin*. SKY plans to advance the Tallebung by increasing the resource to the 16-21Mt* Exploration Target and progress development for future mining (*SKY ASX Announcement 22 March 2023).

DORADILLA PROJECT (EL6258, 100% SKY)

The Doradilla Project is located ~ 30km south of Bourke in north-western NSW and is a large and strategic REE and tin project with excellent potential for associated polymetallic mineralisation (tungsten, copper, bismuth, indium, nickel, cobalt).

NARRIAH PROJECT (EL9524, 100% SKY)

The Narriah Project is located ~70km west of West Wyalong in western NSW and represents a large tin project with multiple historic workings prospective for tin, tungsten and lithium mineralisation with limited drill testing completed to date.

NEW ENGLAND PROJECT (EL9200 & 9210, 100% SKY)

Two exploration licences in the New England Orogen covering areas of significant historical tin production.

COPPER GOLD PROJECTS IRON DUKE (EL6064, BALMAIN; EL9191 100% SKY)

The Iron Duke project is located ~10km southeast of Tottenham in central NSW and covers at least 4 significant historic copper-gold mines. High grade copper-gold mineralisation intersected by previous explorers (e.g. 13m @ 1.56% Cu & 4.48g/t Au).

GALWADGERE (EL6320, 100% SKY)

The Galwadgere project is located ~15km south-east of Wellington in central NSW. An open MRE of 3.6Mt @ 0.78% Cu and 0.28g/t Au defined at Galwadgere with numerous targets with limited drilling testing adjacent to the MRE.

GOLD PROJECTS

CULLARIN / KANGIARA projects (EL7954; EL8400 & EL8573, DVP farm-in)

The Cullarin Project contains equivalent host stratigraphy to the McPhillamys deposit with a similar geochemical, geophysical & alteration signature. 'McPhillamys-style' gold results from previous drilling at the Cullarin Project. SKY's maiden drill program was successful, including HUD002 which returned 93m @ 4.2 g/t Au from 56m.

CALEDONIAN / TIRRANA PROJECTS (EL8920, EL9048, EL9120 100% SKY)

Highlight, 'McPhillamys-style' gold results from previous exploration include 36m @ 1.2 g/t Au from 0m to EOH in drillhole LM2 and 81m @ 0.87g/t Au in a costean on EL8920 at the Caledonian Project.

Figure 4: SKY Tenement Location Map

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Rimas Kairaitis, who is a Member of the Australasian Institute of Mining and Metallurgy. Rimas Kairaitis is a Director of Sky Metals Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kairaitis consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Previously Reported Information

The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www. asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Disclaimer

This report contains certain forward-looking statements and forecasts, including possible or assumed reserves and resources, production levels and rates, costs, prices, future performance or potential growth of Sky Metals Ltd, industry growth or other trend projections. Such statements are not a guarantee of future performance and involve unknown risks and uncertainties, as well as other factors which are beyond the control of Sky Metals Ltd. Actual results and developments may differ materially from those expressed or implied by these forward-looking statements depending on a variety of factors. Nothing in this report should be construed as either an offer to sell or a solicitation of an offer to buy or sell securities.

This document has been prepared in accordance with the requirements of Australian securities laws, which may differ from the requirements of United States and other country securities laws. Unless otherwise indicated, all ore reserve and mineral resource estimates included or incorporated by reference in this document have been, and will be, prepared in accordance with the JORC classification system of the Australasian Institute of Mining, and Metallurgy and Australian Institute of Geoscientists.

JORC CODE, 2012 - TABLE 1

Section 1 Sampling Techniques and Data – DORADILLA PROJECT

(Criteria in this section apply to all succeeding sections)

Criteria	Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	All pulps, AC chips and drill cores were submitted to ALS Orange for preparation and assaying. Nominal sample intervals are 1m and4m composite samples were also made of samples which did not have favourable geology or pXRF readings from the 1m samples taken from the drill rig.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	For AC, assay standards or blanks are inserted at least every 50 samples. All sample lab received weights show consistency with core recovery and interval length.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Each sample was dried, crushed and pulverised as per standard industry practice. AC Drilling – the total sample (~20-30kg) is delivered via cyclone into a large plastic bag which is retained for future use if required. 1m intervals are split using a cone splitter on the rig into a separate calico at the time of drilling 4m composite samples were also made of samples which did not have favourable geology or pXRF readings from the 1m samples taken from the drill rig. Pulps were also pulverised to ensure the sample is homogenised. REE (principally: La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, Yb Y) are analysed at ALS via ME- MS81h by lithium meta-borate fusion and ICP-MS. Overlimit samples are analysed via ME-XRF30 fusion. Forty-eight elements including Ag, As, Cu, Fe, In, Pb, S, Zn are digested by four-acid digest then analysed by ICPMS (method ME-MS61).
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc) 	Aircore (AC) drilling using 76.2mm rods was completed with aircore bit capable of drilling through weathered rock until bit refusal at fresh rock or other material too hard for the bit such as quartz veining.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	Sample quality is assessed by the sampler by visual approximation of sample recovery and if the sample is dry, damp or wet.
	• Measures taken to maximise sample recovery and ensure representative nature of the samples	Drill cyclone and sample buckets are cleaned between rod changes and after each hole to minimise cross-hole contamination and all sampling instruments are cleaned thoroughly to minimise any possibility of contamination. There is no known relationship between sample recovery and grade. Where samples recoveries are less than 95% there is no relationship observed between grade and sample recovery. Relationships between sample recovery and grade are not considered significant where recoveries exceeded 95% in fresh rock.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material 	There is no known relationship between sample recovery and grade. Where no sample has been recovered within the intercepts, intercepts have been calculate assuming 0ppm TREO grade for the interval.

Criteria	Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies 	 Systematic geological and geotechnical logging was undertaken by SKY when the holes were originally drilled. Data collected includes: Nature and extent of lithologies. Relationship between lithologies. Amount and mode of occurrence of ore minerals. Location, extent, and nature of structures such as bedding, cleavage, veins, faults etc. Structural data (alpha & beta) are recorded for orientated core. Geotechnical data such as recovery, RQD, fracture frequency, qualitative IRS, microfractures, veinlets and number of defect sets. For some geotechnical holes the orientation, nature of defects and defect fill are recorded.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography 	Both qualitative and quantitative data is collected. AC chips are retained in trays for future reference
	The total length and percentage of the relevant intersections logged	N/A
Sub-sampling techniques and sample preparation	• If core, whether cut or sawn and whether quarter, half or all core taken	N/A
	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry	AC drilling - the total sample (~20-30kg) is delivered via cyclone into a large plastic bag which is retained for future use if required. 1m intervals are split using a riffle splitter on the rig into a separate calico at the time of drilling. 4m composite samples were also made of samples which did not have favourable geology or pXRF readings from the 1m samples taken from the drill rig and composited into calico bags.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique 	Samples were dried crushed and pulverised to 85% passing 75 microns. This is considered to appropriate homogenise the sample to allow subsampling for the various assay techniques.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples 	Certified Reference Material (CRM) and blanks were inserted at least every 30-50 samples to assess the accuracy and reproducibility of the results. The results of the standards were to be within ±10% variance from known certified result. If greater than 10% variance the standard and up to 10 samples each side were re-assayed. ALS conducted internal check samples every 20 for multielement assay.
	 Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	Field duplicates were taken for AC samples with spear sampling every 50 samples, previously assayed samples were also reassayed to compare with recent assaying. Duplicates performed well. The sample was crushed and pulverised to 90% passing 75 microns. This was considered to appropriately homogenise the sample.
	• Whether sample sizes are appropriate to the grain size of the material being sampled	Sample sizes are industry standard and considered appropriate
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total 	Standard assay procedures performed by a reputable assay lab, (ALS Group), were undertaken. REE are analysed at ALS via ME-MS81h by lithium meta-borate fusion and ICP-MS. Overlimit samples are analysed via ME-XRF30 fusion.

Criteria	Explanation	Commentary
•	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	Not applicable as no geophysical tools were used in the determination of assay results.
	laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision	Certified reference material or blanks were inserted at least every 30-50 samples. Standards are purchased from Certified Reference Material manufacture companies: Standards were purchased in foil lined packets of between 60g and 100g. Different reference materials were used to cover high grade, medium grade, low grade, and trace ranges of elements, with a primary focus on REE.
Verification of sampling and assaying		Drill data is compiled and collated and reviewed by senior staff. External consultants do not routinely verify exploration data until resource estimation procedures are deemed necessary. The intersection calculations were viewed by >1 geological personnel.
	• The use of twinned holes.	Twinned holes have been used at the early stage in exploration.
		Drill Hole Data including: meta data, any gear left in the drill hole, lithological, mineral, survey, sampling, magnetic susceptibility was collected and stored as physical and electronic copies or entered directly into an excel spread sheet using drop down codes. When complete the spreadsheet was combined into a master excel spreadsheet as the drill hole database. Assay data was provided by ALS via .csv spreadsheets. The data was validated using the results received from the known certified reference material. Hard copies of the assay certificates were stored with drill hole data such as drillers plods, invoices, and hole planning documents.

Criteria	Explanation	Commentary
	Discuss any adjustment to assay data	Assay data is adjusted to reflect oxide values by multiplication of the raw assay values for each element by the factors of equivalent chemical oxide weight in the table below:
		Element Oxide Factor
		Ce CeO2 1.228
		Dy Dy203 1.148
		Er Er203 1.143
		Eu Eu203 1.158
		Gd Gd2O3 1.153
		Ho Ho2O3 1.146
		La La203 1.173
		Lu Lu203 1.137
		Nd Nd2O3 1.166
		Pr Pr6011 1.208
		Sm Sm203 1.160
		Tb Tb407 1.151
		Tm Tm203 1.142
		Y Y203 1.2699
		Yb Yb203 1.139
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Historic drill hole collars were located using either a licenced surveyor or on a local imperial or metric grid. Conversion of the local grid co-ordinates has been undertaken by previous exploration companies and has been checked by SKY staff and contract surveyors to provide SKY with a +/-5m accuracy of historic drillhole collars. SKY has used DGPS surveying of drillholes (± 0.1m) to accurately locate them once completed and an initial handheld GPS (+/-3m) reading is used before holes are surveyed via DGPS
	Specification of the grid system used	All coordinates are based on Map Grid Australia Zone 55E, Geodetic Datum of Australia 1994.
	Quality and adequacy of topographic control	Historic drill hole collars were located using either a licenced surveyor or on a local imperial or metric grid. SKY has used DGPS surveying of drillholes (± 0.1m) to accurately locate them and an initial handheld GPS (+/-3m) reading is used before holes are surveyed via DGPS.
ata spacing and istribution	Data spacing for reporting of Exploration Results	At this early exploration stage, the data spacing is variable as the focus is on geological mapping and identifying new zones of mineralisation.
	Data spacing for reporting of Exploration Results Whether the data spacing, and distribu sufficient to establish the degree of geological and grade continuity appropriate for the l Resource and Ore Reserve estimation procedure(s) and classifications applied	

Criteria		Explanation	Commentary
	•	Whether sample compositing has been applied	Sample compositing is not applied.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type	Drilling was orientated to cross the mineralisation trend at moderate to high angles.
	•	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced sampling bias, this should be assessed and reported if material	No sample bias due to drilling orientation is known. The structural controls on mineralisation is considered well understood and consistent.
Sample security	•		Sample chain of custody has been managed by the employees of Sky Metals who commissioned the drilling and transport samples from the drilling rig to assay laboratory. All samples are bagged in tied numbered calico bags, grouped into larger tied polyweave bags, or placed in a stillage box and transported to ALS in Orange by SKY personnel. All sample submissions are documented via ALS tracking system and all assays are reported via email. Sample pulps are returned to site and stored for an appropriate length of time (minimum 3 years). The Company has in place protocols to ensure data security.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data	The Company does not routinely have external consultants verify exploration data until resource estimation procedures are deemed necessary.

Section 2 Reporting of Exploration Results – DORADILLA PROJECT (Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Doradilla Project is described by NSW Exploration Licence 6258 The tenement is 100% owned by Stannum Pty Ltd, a 100% owned subsidiary of Big Sky Metals Pty Ltd and Sky Metals Ltd.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	The conditions of the license for the Doradilla Project require the prior written consent from NSW Minister for Planning (Minister) before any change in effective control of the licence holder or foreign acquisition of substantial control of the licence holder. No impediments known.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties 	The Doradilla Project area has an extensive exploration history, with the tenement area subject to extensive past exploration within 22 previous exploration licences. The main DMK line skarn zone was discovered by North Broken Hill Ltd in 1972. Between 1972 and 1984 several companies, (North Broken Hill Ltd, Renison Ltd, Aberfoyle Exploration Pty Ltd, Metals Exploration Ltd, and Preussag Australia Pty Ltd), drilled multiple diamond, percussion and auger drill holes on the prospect, defining a stratigraphically persistent, low grade, tin-bearing calc-silicate skarn. Significant exploration efforts were also completed by Shell Minerals, Cleveland Tin, Aberfoyle, Eastmet and Metals Exploration. More recent exploration was completed by Goldminco Corporation and YTC Resources (now Aurelia Metals), who completed aircore drilling programmes on 3KEL, the Doradilla deposit, as well as aircore and diamond

Criteria	Explanation	Commentary
		core holes across a number of ultramafic serpentinite bodies, exploring for Avebury-style related nickel mineralisation.
Geology	Deposit type, geological setting and style of mineralisation	The bedrock geology of EL6258 comprises units of low to moderate metamorphic grade phyllite, schist, slate, siltstone, and conglomerate that have been previously interpreted to be part of the Ordovician Girilambone Group. The mineralisation at Doradilla is mainly skarn/replacement tin/tungsten mineralisation hosted with the DMK Line. The DMK Line is a belt of calc-silicate skarns after limestone and marl that is up to 100m thick. This unit is considered to be a conformable part of the Devonian stratigraphy. Other calc silicates have been located at Doradilla Trig, Wednesday Shaft and Northern Shaft. Post-dating deformation and regional metamorphism is the emplacement of a large fractioned A- type granite batholith with an evolved suite of quartz porphyry dykes (the Midway Granite), interpreted to be the source of mineralising fluids at Doradilla. Recent dating has demonstrated a Triassic age for these intrusions. Mineralisation appears to be related to emplacement of this batholith.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level–elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length 	See body of announcement.
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not applicable as drill hole information is included.
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Where reported, drilling results from the Doradilla Project have been length weighted. Grades greater than 500ppm TREO have been used to calculate intercepts. No high cut-off has been applied.
	• Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Intercepts are length weighted with no cutting of grades. This may lead to elevation of intercept grades due to the presence of a narrow interval of high-grade material. Such high grade zones are reported as included intercepts inside the broader intercept.
	The assumptions used for any reporting of metal equivalent values should be clearly stated	No metal equivalences quoted.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results- if the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. if it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Orientated drill core used to allow determination of orientation of structures and mineralisation. Lode orientation of the 3KEL mineralisation is well constrained by previous drilling, outcrop and orientated drillcore measurements.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See body of announcement, and SKY ASX announcement 9 March 2020, SKY ASX announcement 22 September 2021, SKY ASX announcement 25 October 2021 SKY ASX announcement 17 January 2022, SKY ASX announcement 27 January 2022, SKY ASX announcement 7 March 2022, SKY ASX announcement 1 June 2022, SKY ASX announcement 20 September 2022 and SKY ASX announcement 1 November 2022. SKY ASX announcement 25 January 2023, SKY ASX announcement 14 February 2023, SKY ASX announcement 5 April 2023 and SKY ASX announcement 19 April 2023.

Criteria		Explanation	Commentary
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See body of announcement, and SKY ASX announcement 9 March 2020, SKY ASX announcement 22 September 2021, SKY ASX announcement 25 October 2021 SKY ASX announcement 17 January 2022, SKY ASX announcement 27 January 2022, SKY ASX announcement 7 March 2022, SKY ASX announcement 1 June 2022, SKY ASX announcement 20 September 2022 and SKY ASX announcement 1 November 2022, SKY ASX announcement 25 January 2023, SKY ASX announcement 14 February 2023, SKY ASX announcement 5 April 2023 and SKY ASX announcement 19 April 2023.
Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples–size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	^d N/A.
Further work	•	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is imminent to continue exploring the tenement. See body of announcement, and SKY ASX announcement 9 March 2020, SKY ASX announcement 25 October 2021, SKY ASX announcement 17 January 2022, SKY ASX announcement 27 January 2022, SKY ASX announcement 7 March 2022, SKY ASX announcement 1 June 2022, SKY ASX announcement 20 September 2022 and SKY ASX announcement 1 November 2022, SKY ASX announcement 25 January 2023, SKY ASX announcement 14 February 2023, SKY ASX announcement 5 April 2023 and SKY ASX announcement 19 April 2023.
	•	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See body of announcement, and SKY ASX announcement 9 March 2020, SKY ASX announcement 22 September 2021, SKY ASX announcement 25 October 2021 SKY ASX announcement 17 January 2022, SKY ASX announcement 27 January 2022, SKY ASX announcement 7 March 2022, SKY ASX announcement 1 June 2022, SKY ASX announcement 20 September 2022 and SKY ASX announcement 1 November 2022, SKY ASX announcement 25 January 2023, SKY ASX announcement 14 February 2023, SKY ASX announcement 5 April 2023 and SKY ASX announcement 19 April 2023

